Overview

The DS6R plugs into the BP2, BP4 or BP8 backplane. The DS6R monitors six dry switch closure devices and provides one resistive output to the controller. Each switch closure subtracts a precise resistance from the output so a simple subtraction algorithm decodes which switches are set. Each switch terminates on an independent plug on the front of the module and an LED associated with each input indicates switch closure for simple troubleshooting.

Mounting

The DS6R plugs into either a BP2, BP4 or BP8 board as shown in figure 1 .

Figure 1:
DS6R plugging into a BP4 Backplane

Termination

The switch inputs that the DS6R monitors are dry contacts isolated from other circuits. The switch circuits on the DS6R module provide 10 mA sealing current at an open circuit voltage of 5 VDC. Carefully check the specifications on the external switches for proper operation at these sealing current levels.

Figure 2:

(Sideview)

BA/DS6R component

TO CONTROLLER INPUT
FROM DEVICE DRY CONTACT
FROM DEVICE DRY CONTACT
\qquad
\qquad
FROM DEVICE DRY CONTACT
\qquad
from device dry connact

Connector

pin numbers identifier

Green Power LED

CIRCUIT

PIN NUMBERS

Switch input 1 13, 14
Switch input 2 11, 12
Switch input 39, 10
Switch input 4 7, 8
Switch input 55, 6
Switch input 63, 4
Analog output resistance 1 - ouput resistance 2 - ground

Note: The male connectors that plug into the jacks on the board use a rising block screw terminal to hold the wires. It is possible for the block to be in a partially up position allowing the wire to be inserted under the block. Be sure that the male connector screws are turned fully counterclockwise before inserting the wire. Lightly tug on each wire after tightening to verify proper termination.

Specifications subject to change without notice.

operation

Each switch input has an LED associated with it. When the switch is closed the LED will light. The LEDs are physically mounted to correspond with the connector location for that input.

Each switch closure subtracts a precise resistance from the total output resistance of $29.505 \mathrm{~K} \Omega$ as shown in Table 1 at right and in the chart on page 3.

As indicated in the chart, if switches 1,2 and 5 are closed, the output resistance is $29.505 \mathrm{~K} \Omega-15 \mathrm{~K} \Omega-7.5 \mathrm{~K} \Omega-931 \Omega=6.074 \mathrm{~K} \Omega$.

Note: Output resistors are 1/4 watt, be sure that your controller does not overpower them.

Table 1: Output Resistance	
Circuit	Subtraction from Output Resistance
1	$15 \mathrm{~K} \Omega(\pm 1 \%)$
2	$7.5 \mathrm{~K} \Omega(\pm 1 \%)$
3	$3.74 \mathrm{~K} \Omega(\pm 1 \%)$
4	$1.87 \mathrm{~K} \Omega(\pm 1 \%)$
5	$931 \Omega(\pm 1 \%)$
6	$464 \Omega(\pm 1 \%)$

Decoding

The following algorithm in the controller will determine which of the five switches are closed or open. The variable name of Rin used in the following example may be any name that makes sense in your code.

Step 1. Read the resistance from the analog input, save as a variable called Rin.
Step 2. Is the value of Rin between 0 and 30980
Yes.....Go to Step 3
No.......Go to Step 9 (END)
Step 3. Is the value of $\operatorname{Rin}<14750$
Yes.....Switch 1 = Closed or On. Rin2 = Rin. Go to Step 4.
No......Switch $1=$ Open or Off. \quad Rin2 $=$ Rin -15000
Step 4. Is the value of $\operatorname{Rin} 2<7250$
Yes.....Switch 2 = Closed or On. Rin3 = Rin2. Go to Step 5.
No......Switch 2 = Open or Off. Rin3 = Rin2-7500
Step 5. Is the value of Rin3 < 3515
Yes.....Switch $3=$ Closed or On. Rin4 $=$ Rin3. Go to Step 6.
No......Switch 3 = Open or Off. \quad Rin4 $=$ Rin3-3740
Step 6. Is the value of Rin4 < 1645
Yes.....Switch $4=$ Closed or On. Rin5 = Rin4. Go to Step 7.
No......Switch $4=$ Open or Off. $\quad \operatorname{Rin5}=\operatorname{Rin} 4-1870$
Step 7. Is the value of Rin5 <714
Yes.....Switch $5=$ Closed or On. Rin6 $=$ Rin5. Go to Step8.
No......Switch $5=$ Open or Off. \quad Rin6 $=$ Rin5-931
Step 8. Is the value of Rin6 < 250
Yes.....Switch $6=$ Closed or On
No......Switch $6=$ Open or Off
Step 9. END

Swich Closure and Output Resistance Values

Switch 1	Switch 2	Switch 3	Switch 4	Switch 5	Switch 6	Output Resistance in Ohms	$10 \mathrm{~K}-2$ Temperature Fahrenheit	10K-2 Temperature Celsius	10K-3 Temperature Fahrenheit	10K-3 Temperature Celsius
Open	Open	Open	Open	Open	Open	29505Ω	$35.59{ }^{\circ} \mathrm{F}$	$1.99^{\circ} \mathrm{C}$	$31.97^{\circ} \mathrm{F}$	$-0.01^{\circ} \mathrm{C}$
Open	Open	Open	Open	Open	Closed	29041Ω	$36.16^{\circ} \mathrm{F}$	$2.31{ }^{\circ} \mathrm{C}$	$32.59{ }^{\circ} \mathrm{F}$	$0.33{ }^{\circ} \mathrm{C}$
Open	Open	Open	Open	Closed	Open	28574Ω	$36.73{ }^{\circ} \mathrm{F}$	$2.63{ }^{\circ} \mathrm{C}$	$33.22^{\circ} \mathrm{F}$	$0.68{ }^{\circ} \mathrm{C}$
Open	Open	Open	Open	Closed	Closed	28110Ω	$37.32^{\circ} \mathrm{F}$	$2.96{ }^{\circ} \mathrm{C}$	$33.86{ }^{\circ} \mathrm{F}$	$1.03{ }^{\circ} \mathrm{C}$
Open	Open	Open	Closed	Open	Open	27635Ω	$37.93{ }^{\circ} \mathrm{F}$	$3.30^{\circ} \mathrm{C}$	$34.52^{\circ} \mathrm{F}$	$1.40^{\circ} \mathrm{C}$
Open	Open	Open	Closed	Open	Closed	27171Ω	$38.54{ }^{\circ} \mathrm{F}$	$3.64{ }^{\circ} \mathrm{C}$	$35.18^{\circ} \mathrm{F}$	$1.77^{\circ} \mathrm{C}$
Open	Open	Open	Closed	Closed	Open	26704Ω	$39.17^{\circ} \mathrm{F}$	$3.98{ }^{\circ} \mathrm{C}$	$35.86{ }^{\circ} \mathrm{F}$	$2.15{ }^{\circ} \mathrm{C}$
Open	Open	Open	Closed	Closed	Closed	26240Ω	$39.80^{\circ} \mathrm{F}$	$4.33^{\circ} \mathrm{C}$	$36.55^{\circ} \mathrm{F}$	$2.53{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Open	Open	Open	25765Ω	$40.47^{\circ} \mathrm{F}$	$4.70^{\circ} \mathrm{C}$	$37.27^{\circ} \mathrm{F}$	$2.93{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Open	Open	Closed	25301Ω	$41.13^{\circ} \mathrm{F}$	$5.07{ }^{\circ} \mathrm{C}$	$37.99^{\circ} \mathrm{F}$	$3.33{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Open	Closed	Open	24834Ω	$41.80^{\circ} \mathrm{F}$	$5.45{ }^{\circ} \mathrm{C}$	$38.73^{\circ} \mathrm{F}$	$3.74{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Open	Closed	Closed	24370Ω	$42.49{ }^{\circ} \mathrm{F}$	$5.83{ }^{\circ} \mathrm{C}$	$39.48^{\circ} \mathrm{F}$	$4.15{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Closed	Open	Open	23895Ω	$43.21^{\circ} \mathrm{F}$	$6.23{ }^{\circ} \mathrm{C}$	$40.26^{\circ} \mathrm{F}$	$4.59^{\circ} \mathrm{C}$
Open	Open	Closed	Closed	Open	Closed	23431Ω	$43.93{ }^{\circ} \mathrm{F}$	$6.63{ }^{\circ} \mathrm{C}$	$41.04{ }^{\circ} \mathrm{F}$	$5.02^{\circ} \mathrm{C}$
Open	Open	Closed	Closed	Closed	Open	22964Ω	$44.67^{\circ} \mathrm{F}$	$7.04{ }^{\circ} \mathrm{C}$	$41.84{ }^{\circ} \mathrm{F}$	$5.47{ }^{\circ} \mathrm{C}$
Open	Open	Closed	Closed	Closed	Closed	22500Ω	$45.42^{\circ} \mathrm{F}$	$7.46{ }^{\circ} \mathrm{C}$	$42.66^{\circ} \mathrm{F}$	$5.92{ }^{\circ} \mathrm{C}$
Open	Closed	Open	Open	Open	Open	22005Ω	$46.25^{\circ} \mathrm{F}$	$7.92{ }^{\circ} \mathrm{C}$	$43.56{ }^{\circ} \mathrm{F}$	$6.42{ }^{\circ} \mathrm{C}$
Open	Closed	Open	Open	Open	Closed	21541Ω	$47.04{ }^{\circ} \mathrm{F}$	$8.35{ }^{\circ} \mathrm{C}$	$44.41^{\circ} \mathrm{F}$	$6.90^{\circ} \mathrm{C}$
Open	Closed	Open	Open	Closed	Open	21074Ω	$47.85{ }^{\circ} \mathrm{F}$	$8.81{ }^{\circ} \mathrm{C}$	$45.30^{\circ} \mathrm{F}$	$7.39^{\circ} \mathrm{C}$
Open	Closed	Open	Open	Closed	Closed	20610Ω	$48.68^{\circ} \mathrm{F}$	$9.27{ }^{\circ} \mathrm{C}$	$46.20^{\circ} \mathrm{F}$	$7.89{ }^{\circ} \mathrm{C}$
Open	Closed	Open	Closed	Open	Open	20135Ω	$49.55^{\circ} \mathrm{F}$	$9.75{ }^{\circ} \mathrm{C}$	$47.15^{\circ} \mathrm{F}$	$8.42{ }^{\circ} \mathrm{C}$
Open	Closed	Open	Closed	Open	Closed	19671Ω	$50.43^{\circ} \mathrm{F}$	$10.24{ }^{\circ} \mathrm{C}$	$48.10^{\circ} \mathrm{F}$	$8.94{ }^{\circ} \mathrm{C}$
Open	Closed	Open	Closed	Closed	Open	19204Ω	$51.33^{\circ} \mathrm{F}$	$10.74{ }^{\circ} \mathrm{C}$	$49.08^{\circ} \mathrm{F}$	$9.49^{\circ} \mathrm{C}$
Open	Closed	Open	Closed	Closed	Closed	18740Ω	$52.26^{\circ} \mathrm{F}$	$11.25^{\circ} \mathrm{C}$	$50.09^{\circ} \mathrm{F}$	$10.05^{\circ} \mathrm{C}$
Open	Closed	Closed	Open	Open	Open	18265Ω	$53.23^{\circ} \mathrm{F}$	$11.79^{\circ} \mathrm{C}$	$51.14{ }^{\circ} \mathrm{F}$	$10.63{ }^{\circ} \mathrm{C}$
Open	Closed	Closed	Open	Open	Closed	17801Ω	$54.21^{\circ} \mathrm{F}$	$12.34{ }^{\circ} \mathrm{C}$	$52.21^{\circ} \mathrm{F}$	$11.23{ }^{\circ} \mathrm{C}$
Open	Closed	Closed	Open	Closed	Open	17334Ω	$55.22^{\circ} \mathrm{F}$	$12.90^{\circ} \mathrm{C}$	$53.31{ }^{\circ} \mathrm{F}$	$11.84{ }^{\circ} \mathrm{C}$
Open	Closed	Closed	Open	Closed	Closed	16870Ω	$56.26^{\circ} \mathrm{F}$	$13.48^{\circ} \mathrm{C}$	$54.43^{\circ} \mathrm{F}$	$12.46{ }^{\circ} \mathrm{C}$
Open	Closed	Closed	Closed	Open	Open	16395Ω	$57.35^{\circ} \mathrm{F}$	$14.09^{\circ} \mathrm{C}$	$55.63{ }^{\circ} \mathrm{F}$	$13.13^{\circ} \mathrm{C}$
Open	Closed	Closed	Closed	Open	Closed	15931Ω	$58.46^{\circ} \mathrm{F}$	$14.70^{\circ} \mathrm{C}$	$56.83{ }^{\circ} \mathrm{F}$	$13.79^{\circ} \mathrm{C}$
Open	Closed	Closed	Closed	Closed	Open	15464Ω	$59.61^{\circ} \mathrm{F}$	$15.34{ }^{\circ} \mathrm{C}$	$58.08^{\circ} \mathrm{F}$	$14.49^{\circ} \mathrm{C}$
Open	Closed	Closed	Closed	Closed	Closed	15000Ω	$60.80^{\circ} \mathrm{F}$	$16.00^{\circ} \mathrm{C}$	$59.37^{\circ} \mathrm{F}$	$15.20^{\circ} \mathrm{C}$
Closed	Open	Open	Open	Open	Open	14505Ω	$62.10^{\circ} \mathrm{F}$	$16.72^{\circ} \mathrm{C}$	$60.79^{\circ} \mathrm{F}$	$15.99^{\circ} \mathrm{C}$
Closed	Open	Open	Open	Open	Closed	14041Ω	$63.38^{\circ} \mathrm{F}$	$17.43^{\circ} \mathrm{C}$	$62.17^{\circ} \mathrm{F}$	$16.76{ }^{\circ} \mathrm{C}$
Closed	Open	Open	Open	Closed	Open	13574Ω	$64.71{ }^{\circ} \mathrm{F}$	$18.17^{\circ} \mathrm{C}$	$63.62^{\circ} \mathrm{F}$	$17.57^{\circ} \mathrm{C}$
Closed	Open	Open	Open	Closed	Closed	13110Ω	$66.08^{\circ} \mathrm{F}$	$18.93^{\circ} \mathrm{C}$	$65.11{ }^{\circ} \mathrm{F}$	$18.40^{\circ} \mathrm{C}$
Closed	Open	Open	Closed	Open	Open	12635Ω	$67.55^{\circ} \mathrm{F}$	$19.75^{\circ} \mathrm{C}$	$66.71{ }^{\circ} \mathrm{F}$	$19.28^{\circ} \mathrm{C}$
Closed	Open	Open	Closed	Open	Closed	12171Ω	$69.04{ }^{\circ} \mathrm{F}$	$20.58^{\circ} \mathrm{C}$	$68.33^{\circ} \mathrm{F}$	$20.18^{\circ} \mathrm{C}$
Closed	Open	Open	Closed	Closed	Open	11704Ω	$70.61{ }^{\circ} \mathrm{F}$	$21.45^{\circ} \mathrm{C}$	$70.03{ }^{\circ} \mathrm{F}$	$21.13^{\circ} \mathrm{C}$
Closed	Open	Open	Closed	Closed	Closed	11240Ω	$72.24{ }^{\circ} \mathrm{F}$	$22.36{ }^{\circ} \mathrm{C}$	$71.81^{\circ} \mathrm{F}$	$22.12^{\circ} \mathrm{C}$
Closed	Open	Closed	Open	Open	Open	10765Ω	$73.99^{\circ} \mathrm{F}$	$23.33^{\circ} \mathrm{C}$	$73.71{ }^{\circ} \mathrm{F}$	$23.17^{\circ} \mathrm{C}$
Closed	Open	Closed	Open	Open	Closed	10301Ω	$75.79{ }^{\circ} \mathrm{F}$	$24.33^{\circ} \mathrm{C}$	$75.66{ }^{\circ} \mathrm{F}$	$24.26^{\circ} \mathrm{C}$
Closed	Open	Closed	Open	Closed	Open	9834Ω	$77.69{ }^{\circ} \mathrm{F}$	$25.38^{\circ} \mathrm{C}$	$77.73{ }^{\circ} \mathrm{F}$	$25.41^{\circ} \mathrm{C}$
Closed	Open	Closed	Open	Closed	Closed	9370Ω	$79.69^{\circ} \mathrm{F}$	$26.49^{\circ} \mathrm{C}$	$79.90^{\circ} \mathrm{F}$	$26.61{ }^{\circ} \mathrm{C}$
Closed	Open	Closed	Closed	Open	Open	8895Ω	$81.85{ }^{\circ} \mathrm{F}$	$27.69{ }^{\circ} \mathrm{C}$	$82.26{ }^{\circ} \mathrm{F}$	$27.92^{\circ} \mathrm{C}$
Closed	Open	Closed	Closed	Open	Closed	8431Ω	$84.09^{\circ} \mathrm{F}$	$28.94{ }^{\circ} \mathrm{C}$	$84.69{ }^{\circ} \mathrm{F}$	$29.27^{\circ} \mathrm{C}$
Closed	Open	Closed	Closed	Closed	Open	7964Ω	$86.50^{\circ} \mathrm{F}$	$30.28^{\circ} \mathrm{C}$	$87.31^{\circ} \mathrm{F}$	$30.73{ }^{\circ} \mathrm{C}$
Closed	Open	Closed	Closed	Closed	Closed	7500Ω	$89.05^{\circ} \mathrm{F}$	$31.69{ }^{\circ} \mathrm{C}$	$90.09^{\circ} \mathrm{F}$	$32.27^{\circ} \mathrm{C}$
Closed	Closed	Open	Open	Open	Open	7005Ω	$91.98^{\circ} \mathrm{F}$	$33.32^{\circ} \mathrm{C}$	$93.27^{\circ} \mathrm{F}$	$34.04{ }^{\circ} \mathrm{C}$
Closed	Closed	Open	Open	Open	Closed	6541Ω	$94.94{ }^{\circ} \mathrm{F}$	$34.97^{\circ} \mathrm{C}$	$96.50^{\circ} \mathrm{F}$	$35.83{ }^{\circ} \mathrm{C}$
Closed	Closed	Open	Open	Closed	Open	6074Ω	$98.18^{\circ} \mathrm{F}$	$36.77^{\circ} \mathrm{C}$	$100.03^{\circ} \mathrm{F}$	$37.79{ }^{\circ} \mathrm{C}$
Closed	Closed	Open	Open	Closed	Closed	5610Ω	$101.69^{\circ} \mathrm{F}$	$38.72{ }^{\circ} \mathrm{C}$	$103.85^{\circ} \mathrm{F}$	$39.92^{\circ} \mathrm{C}$
Closed	Closed	Open	Closed	Open	Open	5135Ω	$105.65^{\circ} \mathrm{F}$	$40.91^{\circ} \mathrm{C}$	$108.16^{\circ} \mathrm{F}$	$42.31{ }^{\circ} \mathrm{C}$
Closed	Closed	Open	Closed	Open	Closed	4671Ω	$109.93{ }^{\circ} \mathrm{F}$	$43.30^{\circ} \mathrm{C}$	$112.83{ }^{\circ} \mathrm{F}$	$44.90^{\circ} \mathrm{C}$
Closed	Closed	Open	Closed	Closed	Open	4204Ω	$114.77^{\circ} \mathrm{F}$	$45.98^{\circ} \mathrm{C}$	$118.10^{\circ} \mathrm{F}$	$47.83{ }^{\circ} \mathrm{C}$
Closed	Closed	Open	Closed	Closed	Closed	3740Ω	$120.23^{\circ} \mathrm{F}$	$49.02^{\circ} \mathrm{C}$	$124.05^{\circ} \mathrm{F}$	$51.14^{\circ} \mathrm{C}$
Closed	Closed	Closed	Open	Open	Open	3265Ω	$126.68{ }^{\circ} \mathrm{F}$	$52.60{ }^{\circ} \mathrm{C}$	$131.09^{\circ} \mathrm{F}$	$55.05^{\circ} \mathrm{C}$
Closed	Closed	Closed	Open	Open	Closed	2801Ω	$134.12^{\circ} \mathrm{F}$	$56.73{ }^{\circ} \mathrm{C}$	$139.21^{\circ} \mathrm{F}$	$59.56^{\circ} \mathrm{C}$
Closed	Closed	Closed	Open	Closed	Open	2334Ω	$143.19^{\circ} \mathrm{F}$	$61.77^{\circ} \mathrm{C}$	$149.11^{\circ} \mathrm{F}$	$65.06{ }^{\circ} \mathrm{C}$
Closed	Closed	Closed	Open	Closed	Closed	1870Ω	$154.56{ }^{\circ} \mathrm{F}$	$68.09^{\circ} \mathrm{C}$	$161.53^{\circ} \mathrm{F}$	$71.96{ }^{\circ} \mathrm{C}$
Closed	Closed	Closed	Closed	Open	Open	1395Ω	$170.20^{\circ} \mathrm{F}$	$76.78{ }^{\circ} \mathrm{C}$	$178.63^{\circ} \mathrm{F}$	$81.46{ }^{\circ} \mathrm{C}$
Closed	Closed	Closed	Closed	Open	Closed	931Ω	$193.04{ }^{\circ} \mathrm{F}$	$89.46{ }^{\circ} \mathrm{C}$	$203.57^{\circ} \mathrm{F}$	$95.32^{\circ} \mathrm{C}$
Closed	Closed	Closed	Closed	Closed	Open	464Ω	$236.25^{\circ} \mathrm{F}$	$113.47^{\circ} \mathrm{C}$	$250.69^{\circ} \mathrm{F}$	$121.49^{\circ} \mathrm{C}$
Closed	Closed	Closed	Closed	Closed	Closed	0Ω				

This table defines the output resistances for the BAPI BA/DS6R. The resistance outputs have been changed into equivalent temperatures for the $10 \mathrm{~K}-2$ and 10K-3 thermistors. The resistors that define the output resistance are precision units with $\pm 1 \%$ uncertainties. Temperature accuracies are $\pm 0.4^{\circ} \mathrm{F}\left(\pm 0.22^{\circ} \mathrm{C}\right)$ at the low equivalent temperature and $\pm 0.7^{\circ} \mathrm{F}\left(\pm 0.39^{\circ} \mathrm{C}\right)$ at the high equivalent temperatures.
BAPI does not warranty the suitability of these outputs for your particular application. After connecting the BA/DS6R to your controller be sure to test all switch combinations for proper decoding.

Troubleshooting

POSSIBLE PROBLEMS:
Power LED D2 does not light

Improper output resistance

Switch LED does not light when switch is closed

POSSIBLE SOLUTIONS:

- Check to see that the DS6R is firmly inserted into the backplane
- Check to see if the power cable is firmly inserted into the backplane.
- Check to see if the power supply is turned on and working correctly
- Check to see if the output connector is plugged into the correct position.
- Recheck which LEDs are on, and recalculate the expected output resistance.
- Check to see if the switch connector is plugged into the correct position.
- Check switch for proper operation
- Remove switch wiring from connector and replace with a shorted plug, LED should light.

Speciffcations

Power Voltage
10 to 42 VDC
20 to 26 VAC
Power Current 70 mA maximum DC 2.4 VA maximum AC

Switch Voltage 5 VDC

Switch Current 10 mA
Output Resistance \qquad Less than 30Ω (All switches closed) $29.505 \mathrm{~K} \Omega$ (All switches open)

Note: the DS6R may be powered by the BAPI VC75, VC100, VC350, VC2700-STM, PS17 or PS17CB. Contact your BAPI representative for details.

